

Butterfly Valve – Epoxy **Series 7700**

AE7722-3 Series 7700 butterfly valve with gear operator

AE7721-3

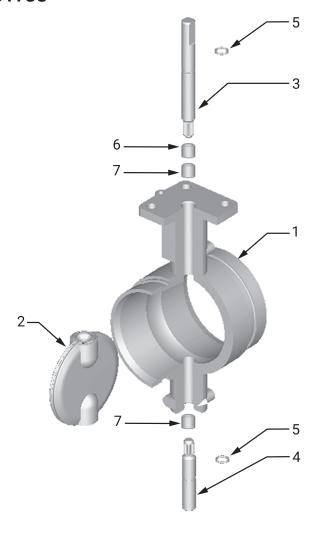
Used in commercial grooved-end piping systems 2" through 12".

The uniqueness of the Series 7700 Gruvlok Butterfly Valve begins with the spherical bore of the disc seat area. This facilitates a constant DISC-TO-SEAT loading that maintains a leak tight seal regardless of disc position. The stem sealing force is constant through the full disc cycle and operating torques are kept low which increases valve life. The design provides a bubble tight seal from full vacuum to 300 psi when the valve is closed. The valve is rated for dead-end service to a full pressure rating of 300 psi. Manufactured without silicone Series 7700 available upon special request.

AE7722-3

The stem-to-disc connection provides zero backlash. The high strength, corrosion resistant, stainless steel stems are blow-out proof. Each stem

2" – 10" Series 7700 Certified to NSF/ANSI 61 (cold water) and Annex G LEAD FREE is fitted with a secondary seal that also provides a lifetime lubrication chamber.


The Series 7700 valve is designed with the contractor in mind. The valve body is a rugged one–piece casting with an integral mounting base for gear operator or handle actuation, while providing room for a minimum of 2" of pipe insulation. The valve is designed and manufactured to meet or exceed the requirements of MSS SP–67.

For data on fire protection listings/ approvals, contact your ASC Engineered Solutions representative.

Butterfly Valve – Epoxy **Series 7700**

Material Specifications

1. Body

Ductile Iron conforming to ASTM A 536, Grade 65-45-12

Body Coating

Ероху

2. Disc

Ductile Iron conforming to ASTM A 536 Grades 65-45-12

Disc Encapsulation

Properties as specified in accordance with ASTM D 2000.

Grade E (EPDM: Service Temperature Range -40°F to +230°F (-40°C to +110°C)

Recommended for water service, dilute acids, alkalies, oil-free air and many chemical services.

Not For Use In Petroleum Services.

Grade T (Nitrile Service Temperature Range -20°F to +180°F (-29°C to +82°C)

Recommended for petroleum products, air with oil vapors, vegetable oils and mineral oils.

Not For Use In Hot Water Services.

3, 4. UPPER AND LOWER SHAFT

Type 416 Stainless Steel

5. O-RINGS

Compatible with disc coating

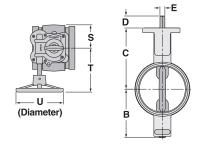
6, 7. TOP AND BOTTOM BRONZE SLEEVE BUSHINGS

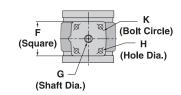
8", 10", & 12" Valve only

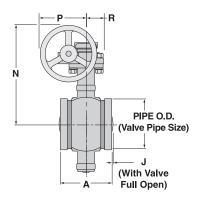
Gruvlok Butterfly Valve Series 7700 (Ordering Information)

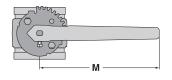
Sample Part Number 8" AE7721-3>	8"	А	E	77	2	1-	3	Special
	Size	Body Style	Body Coating	Series	Disc Coating	Operator	Stem	
	2" - 12"	А	E - Epoxy	77-77XX	1 - Nitrile (Grade T)	0 - None	3 - 416 S.S.	MWS -
					2 - EPDM (Grade E)	1 - 10 Pos. L/Lock		Manufactured without Silicone
						2 - Gear Operator		
						D - Infinite Pos. w/Memory Stop		
						4 - Short 10 Pos. L/lock Operator		

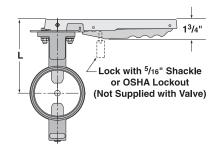
Note: For operator safety, hand levers on the 10" and 12" valves are not available. Hand levers on the 8" valve will be limited to 150 psi to ensure safe operation. 8" valves supplied with a hand wheel will carry the full 300 psi pressure rating.






Butterfly Valve – Epoxy **Series 7700**


Series 7700 Butterfly Valve Dimensions


Dimensions	Valve Size (ANSI/DN)											
Difficitsions	2	21/2	3	4	5	6	8	10	12			
In./mm	50	65	80	100	125	150	200	250	300			
O.D. In./mm	23/8 60.3	2 7/8 73.0	3½ 88.9	4½ 114.3	5% 16 141.3	65/8 168.3	85/8 219.1	10 ³ / ₄ 273.1	1 2³ ⁄₄ 323.9			
А	3 ³ / ₁₆ 81.0	3 ¹³ / ₁₆ 96.8	3 ¹³ / ₁₆ 96.8	4 5/ ₈ 117.3	5 ¹³ / ₁₆ 147.6	5 ¹³ / ₁₆ 147.6	5½ 133.4	6 ½ 158.8	6½ 165.1			
В	3 75.4	3 ³ / ₁₆ 80.8	3 ¹³ / ₁₆ 96.5	4½ 108.5	5 126.5	5½ 138.9	6 ¹⁵ / ₁₆ 175.8	8 202.9	9 229.4			
С	4³/16 105.9	43 / ₈ 111.3	5½16 129.0	53/8 136.7	5 ⁷ / ₈ 149.4	63/8 161.8	7³/₄ 196.9	9½ 240.3	10½ 266.7			
D	1½ ₁₆ 26.9	1½ 26.9	1½ 26.9	1 ¹ / ₁₆ 26.9	1½ 26.9	1½ 26.9	15/8 41.1	15/8 41.1	15/8 41.1			
Е	7/ ₁₆ 11.1	⁷ / ₁₆ 11.1	⁷ / ₁₆ 11.1	7/ ₁₆ 11.1	⁷ / ₁₆ 11.1	⁷ / ₁₆ 11.1	3/ ₄ 19.1	3/ ₄ 19.1	3/ ₄ 19.1			
F	3 76.2	3 76.2	3 76.2	3 76.2	3 76.2	3 76.2	5 127.0	5 127.0	5 127.0			
G	9/ ₁₆ 14.3	9/ ₁₆ 14.3	9/ ₁₆ 14.3	9/ ₁₆ 14.3	7/8 22.2	7/ ₈ 22.2	1 25.4	11/ ₄ 31.8	11/ ₄ 31.8			
Н	⁷ / ₁₆	7/ ₁₆ 11.1	7/ ₁₆ 11.1	7/ ₁₆	7/ ₁₆ 11.1	7/ ₁₆ 11.1	1/ ₂ 13.5	1/ ₂ 13.5	½ 13.5			
J	-	-	-	-	-	1/8 3.3	1 ³ / ₈ 34.8	1 ⁷ / ₈ 47.0	2 ³ / ₄ 70.1			
К	3 76.2	3 76.2	3 76.2	3 76.2	3 76.2	3 76.2	5 127.0	5 127.0	5 127.0			
L	5 ⁵ / ₁₆ 135.1	5½ 140.5	6 ¹ / ₄ 158.2	6½ 165.9	7 178.6	7½ 191.0	-	-	-			
М	10½ 266.7	10½ 266.7	10½ 266.7	10½ 266.7	10½ 266.7	10½ 266.7	-	-	-			
N	7 ¹³ / ₁₆ 198.0	8 203.3	8 ¹¹ / ₁₆ 221.1	9 228.7	9½ 241.4	10 253.9	14 ¹⁵ / ₁₆ 379.2	165/8 422.7	20 ¹¹ / ₁ 525.3			
Р	4 102.1	4 102.1	4 102.1	4 102.1	4 102.1	4 102.1	8 ¹ / ₁₆ 204.5	8½6 204.5	115/8 295.4			
R	1½ 38.2	1½ 38.2	1½ 38.2	1½ 38.2	1½ 38.2	1½ 38.2	2 ⁵ / ₁₆ 58.5	2 ⁵ / ₁₆ 58.5	2% 16			
S	2 51.0	2 51.0	2 51.0	2 51.0	2 51.0	2 51.0	25/8 66.0	2 ⁵ / ₈ 66.0	31/ ₄ 83.0			
Т	6 ⁵ / ₁₆ 160.3	6 ⁵ / ₁₆ 160.3	6 ⁵ / ₁₆ 160.3	6 ⁵ / ₁₆ 160.3	6 ⁵ / ₁₆ 160.3	6 ⁵ / ₁₆ 160.3	10 ¹³ / ₁₆ 275.3	10 ¹³ / ₁₆ 275.3	13 ¹³ / ₁			
U	5 127.0	5 127.0	5 127.0	5 127.0	5 127.0	5 127.0	12 304.8	12 304.8	18 457.2			

Note: 3" or 5" handwheels may be included on valves sizes 2" – 4". Contact your ASC Engineered Solutions Rep. for additional information.

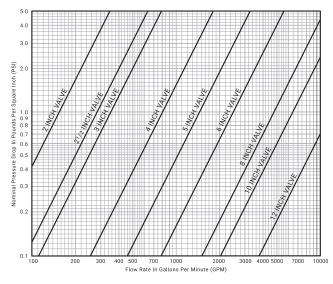
Butterfly Valve – Epoxy Performance Data **Series 7700**

Maximum Working Pressure Rating: 300 PSI (Commercial Applications – Sizes 2" thru 12")

C_V Values

Valve	0.D.			Disc I	Position ((degrees	open)		
Size	0.5.	25°	30°	40°	50°	60°	70°	80°	90°
In./mm	In./mm								
2 50	2.375 60.3	4 0.3	7 0.5	19 1.3	44 3.0	48 3.3	80 5.5	111 7.7	158 10.9
2½ 65	2.875 73.0	9	14 1	34 2.3	78 5.4	84 5.8	142 9.8	196 13.5	280 19.3
3 80	3.500 88.9	14 1.0	20 1.4	50 3.4	112 7.7	128 8.8	215 14.8	285 19.7	400 27.6
4 100	4.500 114.3	29 2.0	41 2.8	100 6.9	239 16.5	250 17.2	420 29.0	582 40.1	826 57.0
5 125	5.563 141.3	62 4.3	76 5.2	182 12.5	415 28.6	445 30.7	780 53.8	1,100 75.8	1,480 102.0
6 150	6.625 168.3	96 6.6	141 9.7	325 22.4	755 52.1	809 55.8	1,370 94.5	1,920 132.4	2,678 184.6
8 200	8.625 219.1	172 11.9	252 17.4	592 40.8	1,365 94.1	1,460 100.7	2,430 167.5	3,410 235.1	4,819 332.3
10 250	10.750 273.1	230 15.9	328 22.6	792 54.6	1,825 125.8	1,962 135.3	3,260 224.8	4,590 316.5	6,431 443.4
12 300	12.75 323.9	418 28.8	604 41.6	1,440 99.3	3,350 231.0	3,590 247.5	5,980 412.3	8,750 603.3	11,947 823.7

Valve Weight And Torque Values


Valve Size	0.D.	*Approx.		Ope	rating Pres	sure	
valve Size	U.D.	Wt. Ea.	50 PSIG	100 PSIG	150 PSIG	200 PSIG	300 PSIG
ln./mm	In./mm	Lbs./Kg		†Breakawa	y Torque (In	Lbs) / N-m	
2	2.375	5	72	90	100	120	200
50	60.3	2.3	8.1	10.2	11.3	13.6	22.6
21/2	2.875	10	105	126	144	162	250
65	73.0	4.5	11.9	14.2	16.3	18.3	28.2
3	3.500	11	126	139	168	195	425
80	88.9	5.0	14.2	15.7	19.0	22	48.0
4	4.500	15	265	285	320	355	800
100	_114.3	6.8	29.9	32.2	36.2	40.1	90.4
5	5.563	20	491	578	615	674	850
125	141.3	9.0	55.5	65.3	69.5	76.2	96.0
6	6.625	46	625	678	760	820	1,650
150	168.3	20.9	70.6	76.6	85.9	92.7	186.4
8	8.625	68	1,170	1,400	1,640	1,760	3,200
200	219.1	30.8	_132.2	158.2	185.3	198.9	361.6
10	10.750	78	1,930	2,375	2,860	3,100	6,000
250	273.1	35.4	218.1	268.4	323.2	350.3	678.0
12	12.75	91	2,900	3,420	4,760	5,600	11,000
300	323.9	41.3	327.7	386.4	537.9	632.8	1,242.9

[†] These values are valid for water and lubricating fluid servi e only. Contact ASC Engineered Solutions for information on torques for dry and non-lubricating fluid servi e.

Headloss Equivalent Length Of Pipe

Valve	0.D.	Equiv	alent Feet of C=120	Pipe*	Max. Insulatin
Size		Sch. 10	Sch. 30	Sch. 40	Thicknes
ln./mm	In./mm	Ft./m			In./mm
2	2.375	5.8	-	4.7	2
50	60.3	1.8		1.4	50
21/2	2.875	5.1	-	3.7	21/2
65	73.0	1.6		1.1	65
3	3.500	9.6	-	7.2	2
80	88.9	2.9		2.2	50
4	4.500	7.5	-	5.7	21/2
100	114.3	2.3		1.7	65
5	5.563	7.0	-	5.6	21/2
125	141.3	2.1		1.7	65
6	6.625	6.1	-	4.8	21/2
150	168.3	1.9		1.5	65
8	8.625	6.3	5.7	-	21/2
200	219.1	1.9	1.7	-	65
10	10.750	11.3	10.2	-	3
250	273.1	3.4	3.1	-	80
12	12.750	8.4	7.4	-	31/2
300	323.9	2.6	2.3	-	90

^{*}The equivalent feet of pipe is based on the Hazen and Williams formula and the flow rates typically used with each size valve.

Introduction

Outlets Couplings

Fittings 0

Valves & Accessories

S Copper Hig System Press

tings Nipples

HDPE Plain-Couplings Fitti

Sock-It* I

Stainless Steel Metho

Roll

Il Installation gs & Assembly

sign Speci

chnical Desi Data Servi

aster Format Te Part Specs.

rial M

^{*}Weights may vary based on valve options selected.

Butterfly Valve **Series 8000GR**

Features

- Up to 150 psig (10.3 bar) WOG (non-shock) in Cast Iron
- Up to 200 psig (13.8 bar) WOG (non-shock) in Ductile Iron
- Outstanding flow characteristics
- Low torque operation

- Superior flow control
- Streamline profile disc
- Suitable for HVAC applications
- Vacuum service to 29.5" (750 mm) Hg
- End-of-line service capabilities

Fig. 8000GR Weight

Valve Size	0.0	Weight				
ANSI	0.D.	Valve Only	Valve with Gear Operator			
In./DN(mm)	In./mm	Lbs./Kg.	Lbs./Kg.			
14	14	354	397			
350	355.6	160.6	180.1			
16	16	428	538.5			
400	406.4	194.1	244.3			
18	18	524	679.0			
450	457.2	237.7	308.0			
20	20	704	858.0			
500	508.0	319.3	389.2			
24	24	1,027	1,324.5			
600	609.6	465.8	600.8			

Butterfly Valve Performance Data

Pressure Ratings:

150 PSIG (10.3 bar) WOG (non-shock) 200 PSIG (13.8 bar) WOG (non-shock) Special order – available upon request. 29.5" (750 mm) Hg Vacuum Service

Temperature Ratings

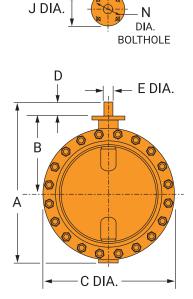
Grade E (EPDM):

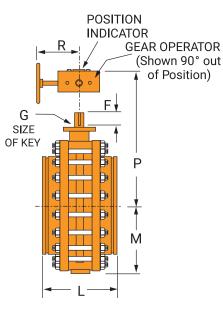
-40°F to 230°F (-40°C to 110°C) (Service Temperature Range) Recommended for water service, dilute acids, alkaline, oil-free air and many chemical services. Not For Use In Petroleum Services.

Grade T (Nitrile):

-20°F to 180°F (Service Temperature Range) (-29°C to 82°C)

Recommended for petroleum products, air with oil vapors, vegetable oils and mineral oils. Not For Use In Hot Water Services.


FC-03.19 page 153


K

DIA. HOLE

Butterfly Valve Series 8000GR

Material Specifications

Cast Iron - ASTM A126 CL.B, Epoxy Coated Ductile Iron - ASTM A536, Epoxy Coated

Extension Body

Pipe - ASTM A53 Steel

Flange - ANSI B16.42 Forged Steel

Liner

Grade E (EPDM)

Grade T (Nitrile)

Note: Stem O-Ring material matches Liner

Stainless Steel - ASTM A351 Aluminum Bronze - ASTM B148 C95400 Nickel Plated Ductile Iron - ASTM A536 Grade 65-45-12

Drive Shaft

Stainless Steel - ASTM A 582 Type 416 Stainless Steel - ASTM A 276 Type 316

Bottom Shaft

Stainless Steel - ASTM A 582 Type 416 Stainless Steel - ASTM A 276 Type 316

Plug

Cast Iron - ASTM A 126 CL.B

Upper Bearing

Reinforced Nylon

Lower Bearing

Reinforced Nylon

Grounding Spring (14" - 20"

Stainless Steel 302

Grounding Ball (24" Only

AISI-1022

Tension Screw (24" Only

AISI-1020

An ASC Engineered Solution

page 154 FC-03.19

Couplings

Introduction

Fittings

Plain-End Fittings

Butterfly Valve **Series 8000GR**

Series 8000GR Butterfly Valves Dimensions

Valve Size ANSI	0.D.	Α	В	С	D	Е	F	G	J	K	L	М	N	Р	R
In./DN(mm)	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	ln./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm
14 350	14.0 355.6	27.1 687.3	13.5 342.9	21.0 533.4	2.0 50.8	1.6 41.4	1.5 38.1	0.4 9.7	6.5 165.1	5.3 133.4	13.1 331.7	11.6 293.6	5.3 133.4	17.3 438.2	13.4 340.4
16 400	16.0 406.4	29.4 747.8	14.8 374.7	23.5 596.9	2.0 50.8	1.6 41.4	1.5 38.1	0.4 9.7	6.5 165.1	5.3 133.4	14.1 357.1	12.7 322.3	5.3 133.4	18.8 476.3	13.4 340.4
18 450	18.0 457.2	32.1 816.1	15.5 393.7	25.0 635.0	3.0 76.2	2.1 54.1	2.4 60.3	0.5 12.7	9.5 241.3	7.5 190.5	1 5 .1 382.5	13.6 346.2	7.5 190.5	19.6 498.6	12.6 320.0
20 500	20.0 508.0	34.9 886.0	16.8 425.5	27.5 698.5	3.0 76.2	2.1 54.1	2.4 60.3	0.5 12.7	9.5 241.3	7.5 190.5	16.1 407.9	15.1 384.3	7.5 190.5	20.9 530.4	12.6 320.0
24 600	24.0 609.6	40.5 1028.4	19.4 492.0	32.1 815.3	3.1 77.7	2.1 54.1	2.4 60.3	0.5 12.7	7.5 190.5	7.5 190.5	17.1 433.3	18.1 458.7	7.5 190.5	25.0 635.0	12.6 320.0

Series 8000GR Butterfly Valves (Ordering Information)

Sample Part Number	24"	G	D-	8	2	8	3	7
24" GD-82837>	Valve Size	Body Style	Body	Series	Seat Material	Disc Material	Operator	Stem
	14" 16"	G - Grooved	C - 150 PSI Service D - 200 PSI Service	8 - 8000	1 - Nitrile 2 - EPDM	0 - Nickel Plated Ductile Iron	0 - None 2 - Gear Operator	6 - 416 S.S. with RTFE Bearing
	18" 20"					7 - 316 S.S. 8 - Bronze (Al-Brz.)	3 - Pneumatic 4 - Electric	7 - 316 S.S. with RTFE Bearing
	24"						5 - Spring Return Pneumatic	
							6 - Square Nut (with Gear Operator)	
							7 - Chain Wheel (with Gear)	

FC-03.19 page 155

Butterfly Valve Series 8000GR

Torque is the rotary effort required to operate a value. This turning force in a butterfly valve is determined by three factors; the friction of the disc and seat due to interference for sealing, bearing friction, and fluid dynamic torque. Breakaway torque is the total of the torques resulting from bearing friction and disc /seat interference friction at a given pressure differential. This value is normally the highest required torque to operate a valve, and is used to size the actuator. Listed below are recommended sizing torques.

Note: These values include a safety factor and are for gases, including nonlubricating or dry gases, at 70 °F. Values for water and lubricating fluids would be reduced. Consult your ASC Engineered Solutions Sales Offci e for additional application information.

Actuator Sizing For General Service Application Series 8000GR Breakaway Torque

Line	Valve Size (In.)										
Pressure	14	16	18	20	24						
(PSI)/Bar		Breakav	vay Torque (In Lb	s.) / N-m							
50	6,246	8,262	10,800	13,662	20,250						
3.4	706	934	1,220	1,544	2,288						
100	7,200	9,900	13,050	16,650	24,300						
6.9	814	1,119	1,475	1,881	2,746						
150	8,262	11,400	15,300	19,650	28,330						
10.3	934	1.288	1.729	2.220	3.201						

C_V VALUES (WATER @ 70°F SP. GR. = 1.00)

V I O'		Disc Position (Degrees Open)											
Valve Size	20°	30°	40°	50°	60°	70°	80°	90°					
In./mm													
14 350	335	670	1,226	1,935	2,893	4,406	6,752	9,578					
16 400	443	886	1,622	2,560	3,827	5,829	8,933	12,671					
18 450	567	1,138	2,075	3,275	4,896	7,457	11,429	16,211					
20 500	711	1,422	2,609	4,116	6,156	9,377	14,371	20,385					
24 600	1,038	2,078	3,792	5,985	8,947	13,628	20,887	29,627					

Fluid Dynamic Torque is the force exerted when a fluid passes over the surface of the butterfly valve disc. The magnitude of this force is dependent on valve size, disc opening and flow through the valve. Typically, fluid dynamic torque is a maximum at an approximate 75° disc opening. Generally, the effects of dynamic torque ca n be ignored when the velocity is less than 15 feet/second for liquids and 15,000 feet/minute for gases to minimize the effects of turbulence on the valve. For applications above these limits, consult engineering.

The formula for determining the
velocity for liquids is:

V = 0.0022	Q
V - 0.0022	Α

Velocity of liquid (feet/second) V =

Q = Flow (gallons/minute)

A = Area of upstream pipe (sq. ft. See "Area of Pipe" chart

The formula for determining the velocity of gases:

$$Vg = \frac{Qf}{\Delta}$$

A =

Vg = Velocity of gas (feet/minute)

Qf = Flow of gas @ flowing

condition* (cubic feet/minute) Area of upstream pipe (sq. ft.)

See "Area of Pipe" Chart

*Flowing condition means at temperature and pressure of gas stream in the valve

Area of Pipe

Pipe Size (Sch 40)	Area
In./mm	Sq. ft/Sq. cm
14	0.940
350	873.29
16	1. 227
400	1,140
18	1.553
450	1,443
20	1. 931
500	1,794
24	2.792
600	2,594

Couplings

FC-03.19 page 156

Butterfly Valves **Fig. 70G**

The Fig. 70G Butterfly Valve is designed for use with Gruvlok couplings, an ASC Engineered Solution, for fast and easy installation on grooved pipe. The valve body is fully rubber lined in EPDM or Nitrile material. A 316 Stainless Steel Disc is standard. The valve is supplied with a two position lockable handle.

Grooved ends conform to the requirements of AWWA C606.

Not intended for use in potable water systems.

Performance

Pressure Rating: 200 psi (13.8 bar) maximum working pressure.

The valve must not be installed with the disc in the fully open position. The disc must be partially closed so that no part is protruding past the end of the valve body during installation.

Material Specifications

Housing

Ductile iron conforming to ASTM A 536, Grade 65-45-12, painted.

Body

Carbon steel, elastomer lined

Body Lining

Grade E (EPDM):

-40°F to 230°F (-40°C to 110°C) (Service Temperature Range)

Recommended for water service, dilute acids, alkaline, oil-free air and many chemical services.

Not For Use In Petroleum Services.

Grade T (Nitrile):

 $-20\,^{\circ}\text{F}$ to 180 $^{\circ}\text{F}$ (Service Temperature Range) (-29 $^{\circ}\text{C}$ to 82 $^{\circ}\text{C})$

Recommended for petroleum products, air with oil vapors, vegetable oils and mineral oils.

Not For Use In Hot Water Services.

Upper & Lower Stem

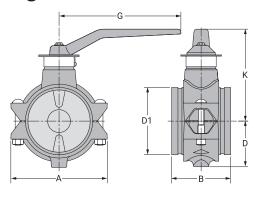
416 Stainless Steel

DISC

316 Stainless Steel

HOUSING BOLTS & NUTS

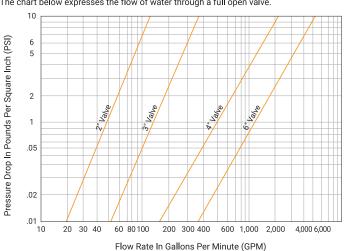
Heat treated, oval-neck track head bolts conforming to ASTM A-183 Grade 2 with a minimum tensile strength of 110,000 psi and heavy hex nuts of carbon steel conforming to ASTM A-563 Grade A or Grade B, or SAE J995 Grade.


2. Bolts and nuts are provided zinc electroplated.

FC-08.16 page 157

Butterfly Valves **Fig. 70G**

Nominal Size	Nominal Dimensions										
Nominal Size	Α	В	D	D1	K	G	Wt. Ea.				
In./DN(mm)	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	Lbs./Kg.				
2	4.06	3.19	1.87	2.37	2.37	5.5	3.50				
50	103	81	48	60	60	140	1.6				
3	5.62	3.81	2.75	3.50	3.50	7.00	7.00				
80	143	97	70	89	89	178	3.2				
4	7.00	4.56	3.50	4.50	4.50	9.00	12.00				
100	178	116	88.9	114	114	229	5.5				
6	9.5	5.81	4.50	6.63	6.63	12.00	30.00				
150	241	148	114	168	168	305	13.6				


C_v Values

:	Size	Flow Coefficients - CV
Nominal Diameter	Actual Outside Diameter	Full Open Valve
In./mm	ln./mm	
2	2.375	74
50	60.3	_
3	3.500	173
80	88.9	_
4	4.500	829
100	114.3	-
6	6.625	1287
150	168.3	-

C_V values for flow of water are with a full open valve.

Flow Characteristics

The chart below expresses the flow of water through a full open valve.

An ASC Engineered Solution

Introduction

Outlets Couplings

Plain-End Fittings

Master Format 3 Part Specs.

FC-08.16 page 158

Gruvlok® Butterfly Valve Fig. 1700G

Material Specifications

Housing

Ductile Iron conforming to ASTM A536, Grade 65-45-12

Coatings *

Flange Adapters: Rust inhibiting paint (Color: Orange)

Valve: Fusion bonded epoxy

(Color: Blue)

Seat

EPDM -30°F to 275°F Nitrile -20°F to 180°F

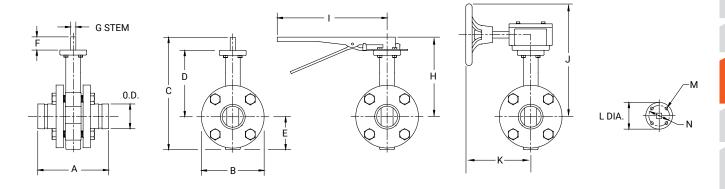
Operator

10 Position Lockable Lever Handle Gear Operator Bare Stem

*For other coating requirements, contact an ASC Engineered Solutions $^{\text{TM}}$ Representative.

Our figu e 1700G grooved end butterfly valve is offered in 2" through 12" sizes and is designed to be used in standard mechanical system applications up to 200 psi and temperatures ranging from -30°F to 275°F.

Features


- 316 Stainless Steel Disc
- 416 Stainless Steel Stem
- Pinless Disc & Stem Design
- Bi-directional
- Suitable for Dead End Service
- Seat design eliminates the need for flanged gaskets
- ISO 5211 Mounting Pad
- MSS SP-25 Markings
- MSS SP-67
- API 609
- EPDM seat -30°F to 275°F

FC-08.22 page 159

Gruvlok® Butterfly Valve **Fig. 1700G**

Nominal	0.D.	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	Weight
Size*																
2	2.375	6.77	6	10.74	6.33	3.15	1.26	0.35	7.59	6.39	10.78	6.1	2.56	0.27	1.96	20.23
2 1/2	2.875	6.87	7	11.65	6.89	3.5	1.26	0.35	8.15	10.5	11.34	6.1	2.56	0.27	1.96	24.64
3	3.5	6.93	7.5	12.12	7.12	3.74	1.26	0.35	8.38	10.5	11.57	6.1	2.56	0.27	1.96	27.97
4	4.5	7.65	9	13.62	7.87	4.49	1.26	0.43	9.13	10.5	12.32	6.1	3.54	0.39	2.76	44.43
5	5.563	7.78	10	14.64	8.38	5	1.26	0.55	9.64	10.5	12.83	6.1	3.54	0.39	2.76	58.79
6	6.625	7.8	11	15.63	8.89	5.48	1.26	0.55	10.15	10.5	13.34	6.1	3.54	0.39	2.76	71.03
8	8.625	8.49	13.5	18.89	10.23	6.89	1.77	0.67	12	14.21	17.86	8.74	4.92	0.47	4.01	99.22
10	10.75	9.5	16	21.26	11.49	8	1.77	0.86	13.26	19.64	19.17	8.74	4.92	0.47	4.01	169.0
12	12.75	10.15	19	22.8	13.26	7.77	1.77	0.86	15.03	19.64	20.94	8.38	5.51	0.47	4.01	244.25

Published weights for 2" through 8" sizes include lever operator. 10" and 12" size weights include gear operator.

Fittings Outlets Couplings

Accessories

n Pressure

Nipples S

Fittings

Fittings Coupling

overs Steel Method

ngs & Assembly

Design spec Services Coatii

mat Technic

Master Forma 3 Part Specs.

ictorial

FC-08.18

Gruvlok® Butterfly Valve **Fig. 1700G**

Technical Information

		Gear Op						C_V						Tor	que	
Size	Output Lbs	Ratio	Gear Box	10°	20°	30°	40°	50°	60°	70°	80°	90°	50 psi	100 psi	150 psi	200 psi
2	1504	24:1	1 Stage	0.1	5	12	24	45	64	90	125	135	70	105	108	115
2-1/2	1504	24:1	1 Stage	0.2	8	20	37	65	98	144	204	220	100	150	136	152
3	1504	24:1	1 Stage	0.3	12	22	39	70	116	183	275	302	150	250	192	204
4	1504	24:1	1 Stage	0.5	17	36	78	139	230	364	546	600	230	260	328	352
5	1504	24:1	1 Stage	0.8	29	61	133	237	392	620	930	1022	350	530	512	548
6	1504	24:1	1 Stage	2	45	95	205	366	605	958	1437	1579	460	680	831	907
8	6195	30:1	1 Stage	3	89	188	408	727	1202	1903	2854	3136	740	1110	1527	1697
10	6195	30:1	1 Stage	4	151	320	694	1237	2947	3240	4859	5340	1330	1880	2530	2857
12	12620	50:1	1 Stage	5	234	495	1072	1911	3162	5005	7507	8250	2260	3150	3794	4338

0'	Pressure		Temperature Rating (°F)						
Size (in)	Rating	EP	DM	Bur	na N				
(,	(psi)	Min	Max	Min	Max				
2 - 8	200	-30	275	10	180				

Published weights for 2" through 8" sizes include lever operator. 10" and 12" size weights include gear operator.

FC-08.18 page 161

Couplings

Fittings

Large Diameter Butterfly Valve with Gear Operator Model B333

The Model B333 Large Diameter Butterfly Valve provides efficient control of fluid flow in piping systems. It is a grooved-end bubble tight shut-off valve with end-to-end dimensions that meet MSS SP-67, Table 4 and a mounting pad that meets ISO 5211 for the mounting of power actuators. The valve is capable of bidirectional fluid flow at working pressures to 300 psi (20 bar) and may be positioned in any orientation.

The 14 to 24 inch (DN350 to DN600) Model B333 Butterfly Valve is configuraed with a worm type gear operator and consists of an epoxy powder coated ductile iron body and EPDM or Nitrile (NBR) rubber encapsulation dual-seal disc. The body and disc construction provides for increased strength and durability. The disc seal and body coating are compatible with a variety of chemicals and temperature ranges. Contact your ASC Representative for specific recommendations on seal and coating selections.

Maximum Working Pressure: 300 psi (20 bar), non-shock cold water

Material Specifications

Valve Body & Disc

Ductile iron conforming to ASTM A536, Gr. 65-45-12 and/or to ASTM A395 Gr. 65-45-15

Stem Seals

O-Ring, EPDM

Body Coating

Epoxy powder coating, black color

Disc Encapsulation

Grade "E" EPDM, Grade "T" Nitrile (NBR)

Upper and Lower Shafts

Type 410

Gear Operator Housing

Set Screw

Hex Nut

Carbon Steel

Spring Pin

Spring Steel

Seat Material:

from -30°F to 200°F (-34°C to 93°C). Recommended for water service, dilute acids, alkalies, oil-free air, and many chemical services.

Grade "T" Nitrile – For service temperatures from -20°F to 180°F (-29°C to 82°C). Recommended for petroleum products, air with oil vapors, vegetable oils, and mineral oils. They are not recommended for use in hot water services.

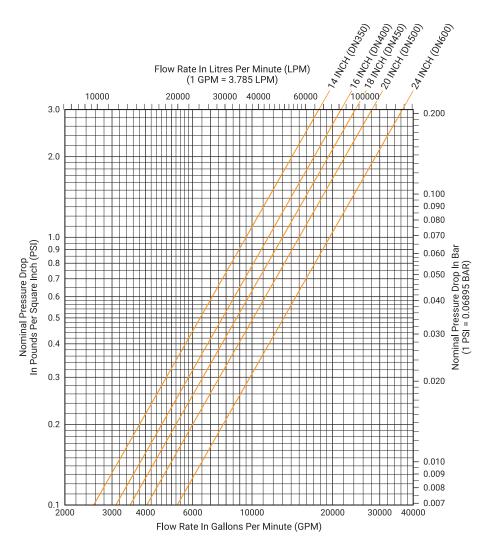
Note: Not recommended for use in hot water services.

Contact an ASC Engineered Solutions Sales Representative for specific ecommendations on seat material.

Stainless steel conforming to ASTM A582,

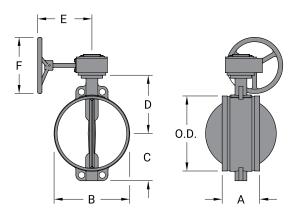
Cast iron, conforming to ASTM A126-B

Cr-Mo Steel


• Grade "E" EPDM – For service temperatures

Note: Not recommended for use in petroleum

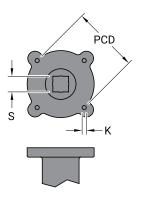
Large Diameter Butterfly Valve with Gear Operator **Model B333**


Note: For design purposes, a safety factor of 15% to 20% should be applied to the values in the above table.

FC-08.18 page 163

Large Diameter Butterfly Valve with Gear Operator Model B333

B333 Large Diameter Butterfly Valve


Valve Size	0.D.	Operating			Dime	nsions			Approx.
Valve 012e	0.5.	Torque	Α	В	С	D	Е	F	Wt. Ea.
In./mm	In./mm	In-lb/Nm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	Lbs./Kg
14	14.000	3000	7.00	14.37	8.82	10.86	9.5	12.00	130.0
350	355.6	339	178	365	224	276	242	305	59
16	16.000	4000	7.00	16.38	9.76	11.89	9.5	12.00	147.4
400	406.4	452	178	416	248	302	242	305	67
18	18.000	5500	8.00	18.50	11.14	13.78	11.40	16.20	223.5
450	457.2	621.5	203	470	283	350	290	412	101.4
20	20.000	8000	8.50	20.75	12.36	15.08	11.40	16.20	292.6
500	508.0	904	216	527	314	383	290	412	133.0
24 600	24.000 609.6	9500 1073.5	10.00 254	24.76 629	14.49 368	17.83 463	11.40 290	16.20 412	352.0 160.0

These torque values were derived from test data with non-lubricated valves in water, non-pressurized at ambient temperatures For information on alternative sizes, contact an ASC Engineered Solutions Sales Representative.

Note: The torque values are based on liquid applications. For dry or non-lubricating applications add a 25% service factor to the above values.

Gear Operator Mounting Dimensions

		Dimen	sions
Valve Size	PCD Dia.	Bolt Size K	S
In./mm	In./mm	In./mm	In./mm
14 350	4.90 125	M12	0.94 24.0
16 400	5.5 140	M16	1.44 36.6
18 450	5.50 140	M16	1.736 44.1
20 500	6.50 165	M20	2.04 52.0
24 600	6.50 165	M20	2.04 52.0

Outlets Couplings

FC-08.18 page 164

Low Profile But erfly Valve **Series 8100**

The Series 8100 Low Profile Butterfly Valve has a rated working pressure of 300 psi (20.7 bar) and provides efficient control of fluid in piping systems. Flow can be from either direction and the valve may be positioned in any orientation. The ductile iron body is epoxy-coated to resist atmospheric corrosion. The disc is EPDM encapsulated ductile iron compatible with a variety of chemicals and temperature ranges.

Maximum Working Pressure: 300 psi (20.7 bar)

Material Specifications

Body

Ductile iron conforming to ASTM A536

Body Coating

Black Epoxy-Coated

Disc

Ductile iron conforming to ASTM A 536

Disc Seal:

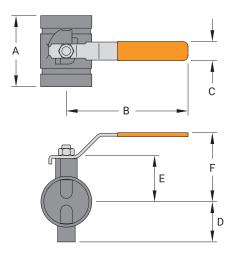
- Grade "E" EPDM encapsulated rubber -20°F to 250°F (-29°C to 121°C) with intermittent service at 250°F (121°C) and continuous service at 225°F (107°C)
- Optional: Grade "T" Nitrile encapsulated rubber -20°F to 180°F (-29°C to 82°C)

Stem

Two-piece stainless steel, splines conforming to AISI 420

Stem Seal

EDPM O-rings, upper and lower stem


Handle

Zinc-plated carbon steel

Low Profile But erfly Valve **Series 8100**

V I 0:	0.0			Dime	nsions			Annrox
Valve Size	O.D.	А	В	С	D	E	F	Approx. Wt. Ea.
In./mm	ln./mm	In./mm	ln./mm	In./mm	ln./mm	In./mm	In./mm	Lbs./Kg
2 50	2.375 60.3	3.4 87.4	6.0 154.4	1.0 25.4	1.8 46.0	2.3 59.0	3.2 81.0	5.0 2.3
2½ 65	2.875 73.0	3.8 96.8	6.0 154.4	1.0 25.4	2.1 52.3	2.4 92.9	3.6 91.9	7.0 3.2
3 80	3.5 88.9	3.8 96.8	8.4 214.4	1.0 25.4	2.6 66.5	2.7 98.1	4.3 108.0	8.0 3.6
4 100	4.5 114.3	4.6 117.9	8.4 214.4	1.0 25.4	3.3 84.1	3.3 84.1	4.9 125.5	12.0 5.4
5 125	5.563 141.3	5.2 132.4	12.3 311.2	1.3 31.8	3.9 99.0	3.9 99.0	5.8 147.6	-
6 150	6.625 168.3	5.3 133.4	12.3 311.2	1.3 31.8	4.4 113.3	4.4 113.3	7.0 177.8	19.0 8.6

Outlets Couplings

Fittings 0

gh Valves sure Accessor

es System

ttings Nip

ouplings Fit

d Fittings Co

wers Steel Method

& Assembly Gr

sign Special vices Coatings

Data

Master Format Te 3 Part Specs.

ictorial N

PVC Butterfly Valve (Spline x Spline) **Model B8200L**

Model B8200L Butterfly Valves are available in sizes 2 through 8 inch diameters. Precision machined grooves in the valve body provide easy alignment of the valve and compatible PVC couplings, allowing for the insertion of the spline to connect the Model B8200L Valve to the PVC piping system. Flow may enter the valve from either direction and valve can be orientated in any direction.

The valve efficiently controls the flow of fluid through the use of a 10-position lever lock plate that has full open, closed, and graduated intermediate locking positions. The lever handle may be pad-locked in any of the positions, including full open and closed to prevent tampering.

The valve body is constructed of ductile iron with a tough epoxy-coating. The disc is Nitrile coated ductile iron construction. The body and disc construction provide high strength and durability as well as compatibility with a wide variety of chemicals. Type 316 Stainless Steel Stems have EDPM O-rings as back-up seals.

Model B8200L Butterfly Valves have a rated working pressure of 320 psi (22 bar), which equals or exceeds the pressure rating of all components. The working temperature range of the valve is from $32^{\circ}F$ to $140^{\circ}F$ ($0^{\circ}C$ to $60^{\circ}C$).

Maximum Working Pressure: 320 psi (22 bar)

Working Temperature Range: 32°F to 140°F (0°C to 60°C)

Material Specifications

Body

Ductile iron conforming to ASTM A536, Gr. 65-45-12

Body Coating

Black Epoxy-Coated

Disc

Ductile iron conforming to ASTM A 536, Grade 65-45-12

Disc Seal

Grade "T" Nitrile encapsulated rubber

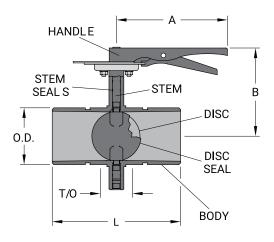
Stem

Two-piece Type 316 Stainless Steel Splines

Stem Seal

EPDM O-rings, upper and lower stem

Handle


Zinc-plated carbon steel

FC-03.18 page 167

PVC Butterfly Valve (Spline x Spline) **Model B8200L**

Valve Size	0.D.		Dimer	nsions		Approx.
Valve 012c	0.5.	Α	В	L	T/0	Wt. Ea.
In./mm	In./mm	In./mm	ln./mm	In./mm	In./mm	Lbs./Kg
2	2.375	7.95	5.16	7.50	2.40	8.8
50	60.3	202.0	131.0	191.1	61.0	4.0
3	3.500	7.95	5.75	9.18	2.17	17.6
80	88.9	202,0	146.0	233.2	55.1	8.0
4	4.500	7.95	7.05	10.18	2.08	26.4
100	114.3	202.0	179.0	258.6	52.8	12.0
6	6.625	10.28	8.39	10.41	2.31	50.6
150	168.3	261.0	213.0	264.6	58.7	23.0
8	8.625	12.40	9.37	10.96	2.00	74.8
200	219.1	314.9	238.0	278.4	50.8	34.0

10" and 12" (250 and 300 mm) are available upon request. Contact ASC Engineered Solutions Sales Representative.

Introduction

Outlets Couplings

Fittings Out

Valves & Accessories

System

ngs Nipples

HDPE Plain-End Couplings Fittings

Method Fittings Co

Groovers Steel

gs & Assembly

esign Special rvices Coating

Data

Master Format Te 3 Part Specs.

Pictorial

FC-03.18 page 168

The Series 7500 grooved-end ball valve line consists of a 2" to 6", two piece design, and is available in configurations to address a broad spectrum of application requirements.

The Series 7500 has generous factors of safety for pressure retention and stem torsional strength. In addition, it has a blow-out proof stem design, low operating torque, and high C_{ν} .

The Series 7500 is compliant with NACE MR01–75 when stainless steel trim is specified.

Grooved ends conform to the requirements of AWWA C606 for steel pipe.

For special configurations, contact your ASC Engineered Solutions representative.

For stainless steel, see the stainless steel section.

Pressure-Rating: 800 psig CWP (55 bar) in ASTM A 395 Ductile Iron

Material Specifications

Ductile Iron/Stainless Steel

Body

Ductile Iron ASTM A 395

Endplate

Ductile Iron ASTM A 395

Bal

Stainless Steel 316 or 304

Stem

316 Stainless Steel

Thrust Washer

RTFE

Stem Seal

Flouroelastomer

Retaining Ring

Carbon Steel

Handle

Carbon Steel Zinc Plated

Handle Nut

300 Series Stainless Steel

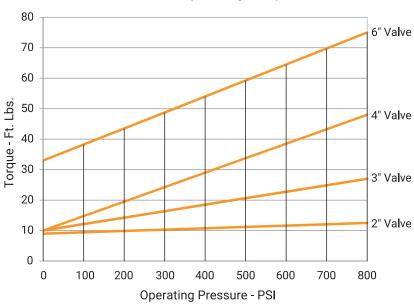
Seat

RTFE

Body Seal

Viton

Lock Plate 300 Series Stainless Steel



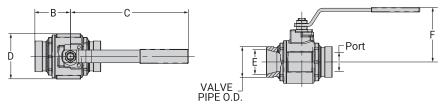
FC-09.15 page 169

Ball-Valves **Series 7500**

The nominal torque values are for water and lubricating service only. For dry gasses an additional multiplier of 2 should be applied to the nominal values. Additional torque of up to 3 times the nominal value may be required to break the ball loose if the valve is not frequently operated.

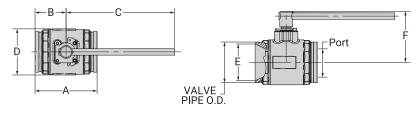
Series 7500 Ball Valves (Ordering Information)

Sample Part Number	4"	G	1-	75	4	2 -	2
4" GI-7512-2>	Size	Configuration	Body/End Material	Series	Ball and Stem Material	Seat Material	Operator
	2" - 6"	G - 2 Way Grooved End	I - Ductile Iron ASTM A395	75 - 7500	4 - 304 Stainless Steel (2" - 4")	2 - RTFE / Flouroelastomer	2 - 2 Position Locking Handle
		EIIU	A21M A393		6 - 316 Stainless Steel		3 - Bare Stem (6" only)
							M - Mining Handle (4" & 6" only)


Introduction

Fittings Outlets Couplings

FC-09.15 page 170


Ball-Valves **Series 7500**

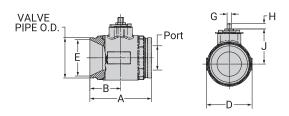
7500 Ball Valve

Size	0.D.		Nominal Dimensions									
ANSI	0.5.	Α	В	С	D	E	F	Port	Cv	Wt. Ea.		
In./DN(mm)	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm		Lbs./Kg		
2	2.375	51/2	231/32	955/64	31/2	159/64	415/64	11/2	170	7.5		
50	60.3	140	75	250	89	49	107	38	170	3.4		
3	3.500	69/16	337/64	125/8	55/64	257/64	531/64	21/2	425	18.0		
80	88.9	167	91	321	129	74	139	64	420	8.2		
4	4.500	81/4	411/64	151/64	5 ²⁹ / ₃₂	33/4	5 ¹⁵ / ₁₆	3	600	34.0		
100	114.3	210	106	382	150	95	151	76	600	15.5		
6*	6.625	107/64	51/16	151/64	7 ³³ / ₆₄	563/64	713/32	4	0.50	67.0		
150	168.3	257	129	382	191	152	188	102	850	30.5		

 $^{^{*}6}$ " sizes come bare stem only. 2 position locking handle sold separately.

7500 Ball Valve With Mining Handle

Size	0.D.	Nominal Dimensions								Approx.
ANSI O.D.	Α	В	С	D	Е	F	Port	Cv	Wt. Ea.	
In./DN(mm)	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm		Lbs./Kg
4*	4.500	81/4	411/64	17 ²³ / ₃₂	5 ²⁹ / ₃₂	33/4	6 ⁵⁵ /64	3	600	35.0
100	114.3	210	106	450	150	95	174	76	600	15.9
6*	6.625	107/64	51/16	17 ²³ / ₃₂	733/64	563/64	8 ²¹ / ₆₄	4	050	68.0
150	168.3	257	129	450	191	152	212	102	850	30.9


^{*}Mining handle sold separately.

FC-09.15 page 171

Ball-Valves **Series 7500**

7500 Ball Valve With Bare Stem

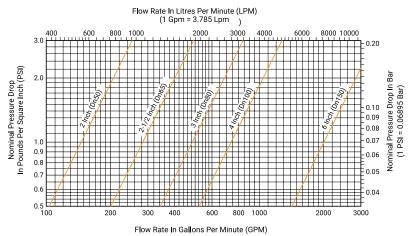
Size O.D.	0 D	Nominal Dimensions							Cv	Approx.	
		Α	В	D	Е	G	Н	I	Port		Wt. Ea.
In./DN(mm)	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	ln./mm	In./mm		Lbs./Kg
6	6.625	107/64	51/16	7 ³³ / ₆₄	563/64	45/64	7/8	5 ⁴⁹ / ₆₄	4	850	66.0
150	168.3	257	129	191	152	18	23	147	102	630	30.0

Standard option, handle sold separately.

Fittings Outlets Couplings

Plain-End Fittings

FC-09.15 page 172


Grooved End Ball Valve with Lever Handle and Gear Operator

The Model BV835 is a ductile iron, grooved end, regular port, two-piece ball valve that provides for efficient control of fluid in piping systems. The Model BV835 is designed and tested in conformance with MSS SP-110 and MSS SP-72. Flow may be from either direction, and the valves may be positioned in any orientation. The valves are furnished with grooved ends for use with Gruvlok grooved couplings. The handle is provided with a device for padlocking in either the open or closed position. The mounting pad is made to ISO 5211 to allow for mounting of power actuators.

Maximum Working Pressure: 1,000 psi (68.9 bar) 2" – 3" (50 – 80mm) 800 psi (55.1 bar) 4" – 6" (100 – 150mm)

Model BV835 Ball Valve Nominal Pressure Loss VS Flow

Material Specifications

Body

Ductile iron conforming to ASTM A536, Gr. 65-45-12

Body Coating

Black enamel

Body Seal

PTFE

Ball

Type 304 Stainless Steel

Ball Seat

2" - 4" - Glass-filled TFE, 6" - Carbon-filled TFE

Stem

Carbon steel, nickle-plated, Optional: Type 304 Stainless Steel

Stem O-Ring

Fluroelastomer

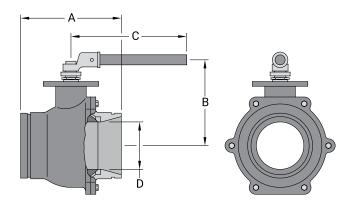
Stem Seal

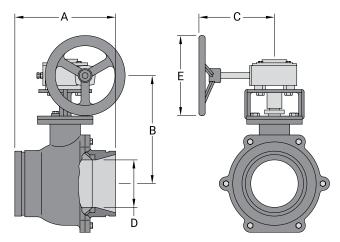
PTFE

Lever Handle

- 2" 3" (50 80mm): Carbon Steel, Zinc Plated with PVC Plastic
- 4" 6" (100 150mm): Ductile Iron and Carbon Steel

Bracket & Extension Sleeve


Ductile Iron conforming to ASTM A536, Grade 65-45-12 and/or ASTM A395, Grade 65-45-15

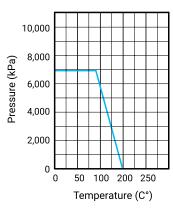


FC-03.18 page 173

Grooved End Ball Valve with Lever Handle and Gear Operator **Model BV835**

BV835 Ball Valve with Lever Handle

Valve	0.D.	Operating		Dimer	nsions		Approx.
Size	0.5.	Torque	Α	В	С	D	Wt. Ea.
In./mm	In./mm	InLbs./Nm	In./mm	In./mm	In./mm	In./mm	Lbs./Kg
2	2.375	150	5.50	3.75	7.00	1.50	6.4
50	60.3	17	140.0	95.0	178.0	38.1	2.9
21/2	2.875	186	6.25	5.20	10.43	2.00	10.6
65	73	21	159.0	132.0	265.0	51.0	4.8
3	3.500	248	6.56	5.63	10.43	2.50	13.4
80	88.9	28	167.0	143.0	265.0	63.5	6.1
4	4.500	398	9.45	5.35	23.6	3.50	60.0
100	114.3	45	240.0	135.8	600.0	90.0	27.2
6	6.625	531	10.15	8.68	23.6	4.92	79.2
150	168.3	60	258.0	220.5	600.0	125.0	36.0


For the first opening or closing of the valve when the valve is not continuously operated, an additional torque of 2.0 – 2.5 times the listed operating torque is normally required. For information on larger sizes, contact an ASC Engineered Solutions Sales Representative.

BV835 Ball Valve with Gear Operator

Valve	0.D.			Dimensions	5		Approx
Size	0.0.	Α	В	С	D	Е	Wt. Ea.
ln./mm	ln./mm	ln./mm	In./mm	In./mm	In./mm	In./mm	Lbs./Kg
2	2.375	5.50	5.38	8.00	1.50	6.00	18.0
50	60,3	140,0	137,0	203,2	38,1	152,4	8,0
21/2	2.875	6.25	5.68	8.00	2.00	6.00	22.0
65	73,0	159,0	144,2	203,2	51,0	152,4	10,0
3	3.500	6.56	7.16	8.00	2.50	6.00	31.0
80	88,9	167,0	182,0	203,2	63,5	152,4	14,0
4	4.500	9.45	8.00	8.00	3.50	6.00	73.0
100	114,3	240,0	203,2	203,2	90,0	152,4	33,0
6	6.625	10.15	10.89	14.00	4.92	12.00	123.4
150	168,3	258,0	277,0	356,0	125,0	305,0	56,0

For information on larger sizes, contact an ASC Engineered Solutions Sales Representative.

Model BV835 Ball Valve Pressure Performance

FC-12.08 page 174

Introduction

ets Couplings

ittings Out

Valves & Ire Accessorie

ystem Pi

Nipples

Fittings

Sock-It® HDPE Fittings Coupling

Stainless So Steel Method Fi

Assembly Gro

Special Coatings

cal Design

rmat Techn ecs. Dat

Master Format 3 Part Specs.

torial M

Check Valve Fig. 90G

The Fig. 90G Check Valve is designed for use with Gruvlok couplings, an ASC Engineered Solution, for fast and easy installation on grooved pipe.

Grooved ends conform to the requirements of AWWA C606.

The valve is fited with a large bonnet closure for ease of field servicing

All Fig. 90G Check Valves are supplied with a 1/2" NPT pipe plug installed in the bonnet cap.

The valve is available with Bonnet Gaskets and Clapper Seals made from EPDM or Nitrile.

Performance

Pressure Rating: 300 psi (20.7 bar) maximum working pressure.

The Fig 90G must be installed with the arrow on the valve body point in the direction of flow through the pipeline. This valve must be installed on horizontal pipelines only.

Material Specifications

Ductile iron conforming to ASTM A 536, Grade 65-45-12, painted.

Bonnet Cap

Ductile iron conforming to ASTM A 536, Grade 65-45-12, painted.

Bonnet Coupling Housing

Ductile iron conforming to ASTM A 536, Grade 65-45-12, painted.

Type 316 Stainless Steel

Clapper Pin

Type 316 Stainless Steel

Bushing

PTFE

Clapper Seat/Bumper/Bonnet Gasket

Grade E (EPDM):

-40°F to 230°F (-40°C to 110°C) (Service Temperature Range)

Recommended for water service, dilute acids, alkaline, oil-free air and many chemical services.

Not For Use In Petroleum Services.

Grade T (Nitrile):

-20°F to 180°F (Service Temperature Range) (-29°C to 82°C)

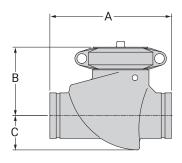
Recommended for petroleum products, air with oil vapors, vegetable oils and mineral oils.

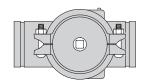
Not For Use In Hot Water Services.

Plugs

Malleable iron conforming to ASTM A 47, galvanized.

Closure Bolts & Nuts

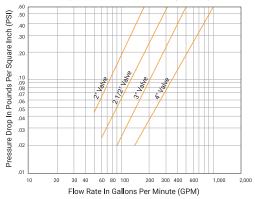

Heat treated, oval-neck track head bolts conforming to ASTM A-183 Grade 2 with a minimum tensile strength of 110,000 psi and heavy hex nuts of carbon steel conforming to ASTM A-563 Grade A or Grade B, or SAE J995 Grade 2. Bolts and nuts are provided zinc electroplated.



FC-06.11 page 175

Check Valve Fig. 90G

Fig. 90G Check Valve


Nominal Size	0.D.		Nominal Dimensions				
Nominal Size		Α	В	С	Wt. Ea.		
In./DN(mm)	In./mm	ln./mm	ln./mm	In./mm	Lbs./Kg.		
2	2.375	9.02	5.12	1.85	11.4		
50	60.3	229	30	47	5.2		
21/2	2.875	9.25	5.34	2.24	21.3		
65	73.0	235	136	57	9.7		
3	3.500	10.75	5.71	2.76	16.0		
80	88.9	273	145	70	7.3		
4	4.500	12.01	6.42	3.31	33.3		
100	114.3	305	163	84	15.1		

C_v Values

	Size	Flow Coefficients - Cv
Nominal Diameter	Actual Outside Diameter	Full Open Valve
In./mm	In./mm	
2	2.375	80
50	60.3	
2½	2.875	134
65	73.0	_
3	3.500	210
80	88.9	_
4	4.500	430
100	114.3	_

Flow Characteristics

The chart below expresses the flow of water through a full open valve.

 C_{V} values for flow of water are with a full open valve.

Important Note:

The Fig 90G check valve life may be shortened and system damage may occur if check valves are installed too close to a source of unstable flow. Check valves must be installed at a reasonable distance away from pumps, elbows, expanders, reducers or other similar devices. Sound piping practices dictate a minimum of five (5) times the pipe diameter for general use. Distances between three (3) and five (5) diameters are allowable provided the flow velocity is less than 8 feet per second. Distances less than 3 diameters are not recommended.

FC-06.11 page 176

Introduction

Couplings

Outlets Fittings

Master Format 3 Part Specs.

Grooved-End Silent Check Valve Fig. 400G

The 400G is a center guided, spring loaded, silent check valve. Designed and engineered for silent operation with low head loss, the valve disc will close prior to the reversal of flow, thereby preventing or minimizing water hammer and damaging shock.

- The 400G can be used in any HVAC, industrial or commercial grooved piping systems.
- The valve is designed for liquid service with any pipe orientation, flow up or down.
- Bronze metal seats are standard, with Stainless Steel or resilient seats available as an option.
- Flow coefficients for this valve are some of the lowest in the industry and are listed for each size on the drawing.

Note: Valve is designed for liquid service only. Install 3 to 4 pipe diameters downstream from pump discharge or elbows to avoid flow turbulence.

Material Specifications

Standard Materials

Cast Iron body ASTM A 48, Class 35 Bronze Disc and Seat ASTM B 584 Alloy 838 Ductile Iron Grooved-Ends ASTM A 395

Optional Trim Materials

Bronze with Nitrile seats Stainless Steel seats

Stainless with Nitrile seats

1. Body: Cast Iron ASTM A 48, Class 35

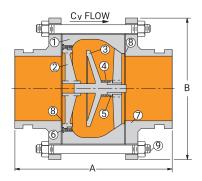
2. Seat: Bronze ASTM B 584, Copper Alloy 838

3. Plug: Bronze ASTM B 584, Copper Alloy 838

4. Spring: Stainless Steel T304, ASTM A 313

5. Bushing: Bronze ASTM B 584, Copper Alloy 836

6. Screws: Stainless Steel T304, ASTM A 276


7. Grooved-End: Ductile Iron ASTM A 395

8. Gasket: Non Asbestos

For gasket grade recommendations see the Technical Data section

9. Bolts: Carbon Steel

Other materials and resilient seats are available. contact your Sales representative.

FC-06.11 page 177

Grooved-End Silent Check Valve **Fig. 400G**

Available in Sizes 2" thru 10"

Fig. 400G Grooved-End Silent Check Valve

Valve Size	O.D.	Model	А	В	C _v Flow *	Approx Wt. Eac
In./mm	ln./mm	Number	ln./mm	ln./mm		Lbs./Kg
2 50	2.375 60.3	402G	6 152	6 152	66 1,676	12 5.4
2½ 65	2.875 73.0	4025G	61/4 159	7 178	88 2,235	15 6.8
3 80	3.500 88.9	403G	67/16 164	71/2 191	130 3,302	20 9.1
4 100	4.500 114.3	404G	81/8 206	9 229	228 5,791	36 16.3
5 125	5.563 141.3	405G	11¼ 286	10 254	350 8,890	50 22.7
6 150	6.625 168.3	406G	121/4 311	11 279	520 13,208	68 30.8
8 200	8. 625 219.1	408G	13¾ 349	131/2 343	900 22,860	140 63.5
10 250	10.75 273.1	410G	16 406	16 406	1,450 36,830	198 89.8

^{*}Flow coefficient is the number of U.S. gallons/minute of 60° F (16° C) water that will flow through a valve with 1 psi (0.069 bar) of pressure drop across the valve.

Max. Non-Shock Working PSI 125# ANSI B16.1 Flange Rating

Size	Temp	erature
01, 101	150°F 65°C	200°F 90°C
2" - 10"	200 PSI	190 PSI
	13.8 bar	13.1 bar

וווסממכווסו

s coupiin

tings Ou

Valves & Accessories

er High Pressure

Di-Electric CTS Copp Nipples System

ngs Fittings

Sock-It HDI

Stainless rs Steel Method

allation Ro ssembly Groo

Special In: Coatings &,

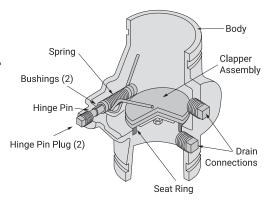
cal Design 3 Services

ster Format Tec

orial Ma Jex 3 F

FC-06.11 page 178

Check Valves for use in Grooved–End Piping Systems


The Gruvlok Series 7800 Check Valve is a compact, cost effective valve offering low pressure–drop, non–slam performance. The Series 7800 Check Valve assembly is lighter and faster to install, and costs less than flanged and wafer valve assemblies.

In the fully open position the Series 7800 swing clapper is held tightly against the valve body, out of the flow stream, to provide maximum flow area and prevention of clapper flutter. The clapper design produces quick, non-slam closure before flow reversal can occur, while meeting FM requirements for an anti-water hammer valve rating.

Each valve is hydrostatically tested for leak tightness to 500 PSI. The clapperseat design permits leak free sealing of back pressures in service conditions ranging from 300 PSI (20.7 bar) to as low as 1 PSI (0.07 bar) (head pressure: 28").

Performance

Pressure Rating: Commercial Applications – Sizes 2" thru 12" inclusive, 300 psi (20.7 bar) maximum working pressure.

Material Specifications

Body

Ductile iron conforming to ASTM A 536, Grade 65-45-12

Coating

Rust inhibiting paint on exterior and interior – color: orange enamel

Clappe

2"- 5" Type 304 or 302 stainless steel to ASTM A 167

6"-12" Ductile iron conforming to ASTM A 536, Grade 65-45-12

Clapper Facing

Grade E EPDM: -40° to 230°F (-40° to 110°C) Service Temperature Range

Recommended for water service, dilute acids, alkaline, oil-free air and many chemical services.

Not For Use In Petroleum Services.

Grade T Nitrile: -20° to 180°F (-29° to 80°C)
Service Temperature Range

Recommended for petroleum products, air with oil vapors, vegetable oils and mineral oils.

Not For Use In Hot Water Services.

Seat Ring

Type 304 stainless steel to ASTM A 123, ASTM A 213, ASTM A 312 or ASTM A 269

Spring

Type 302 stainless steel to ASTM A 313

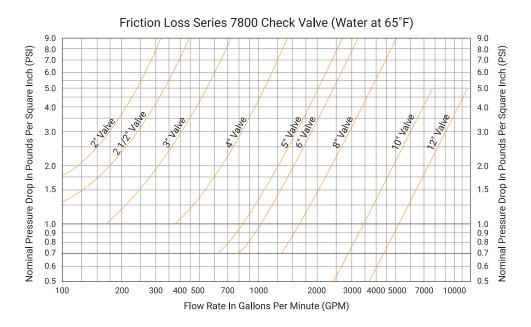
Hinge Pin

Type 304 or 302 stainless steel to ASTM A 580

Hinge Pin Bushings

Sintered bronze to ASTM B 438

Hinge Pin Plugs & Drain Plugs


Cast iron to ASTM A 126 Class A

FC-06.11 page 179

Check Valves for use in Grooved-End Piping Systems **Series 7800**

Flow Data - Friction Loss (Ft. of Pipe)

Valve Size	0.D.		C=100			C=120	
valve Size		Sch. 10	Sch. 30	Sch. 40	Sch. 10	Sch. 30	Sch. 40
In./mm	ln./mm	Ft./m	Ft./m	Ft./m	Ft./m	Ft./m	Ft./m
2	2.375	10	_	8	14	_	11
50	60.3	3.0		2.4	4.3		3.4
21/2	2.875	14	_	10	20	_	15
65	73.0	4.3		3.0	6.1		4.6
3	3.500	17	_	12	23	_	17
80	88.9	5.2		3.7	7.0		5.2
4	4.500	17	_	13	23	_	18
100	114.3	5.2		4.0	7.0		5.5
5	5.563	14	_	11	20	_	15
125	141.3	4.3		3.4	6.1		4.6
6	6.625	23	_	19	33	_	26
150	168.3	7.0		5.8	10.1		7.9
8	8.625	35	32	30	50	45	43
200	219.1	10.7	9.8	9.1	15.2	13.7	13.1
10	10.750	28	25	24	40	36	34
250	273.1	8.5	7.6	7.3	12.2	11.0	10.4
12	12.750	31	28	26	44	39	37
300	323.9	9.4	8.5	7.9	13.4	11.9	11.3

Flow Data

The approximate friction losses, based on the Hazen and Williams formula, expressed in equivalent length of pipe is given below.

The friction losses have been calculated on the basis of flow rates typically used with each size valve.

Important Note:

Check valve life may be shortened and system damage may occur if check valves are installed too close to a source of unstable flow. Check valves must be installed at a reasonable distance away from pumps, elbows, expanders, reducers or other similar devices. Sound piping practices dictate a minimum of five (5) times the pipe diameter for general use. Distances between three (3) and five (5) diameters are allowable provided the flow velocity is less than 8 feet per second. Distances less than 3 diameters are not recommended.

This valve may be installed vertically or horizontally. In a horizontal installation, the hinge pin is to be located on top.

Not for use in copper systems.

Introduction

Couplings

tings 0

Valves & Accessories

High Pressure

System

nd Di-Electri

Fittings

renta HDI ngs Coupl

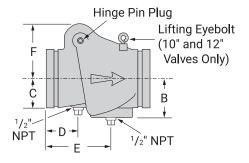
stainless So

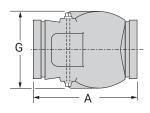
oly Groover

rings & Asser

Services

Data


Master Format 3 Part Specs.


ictorial N

FC-07.16 page 180

Check Valves for use in Grooved-End Piping Systems **Series 7800**

Fig. 7800 Check Valve

	0.5			N	lominal Dimensio	ns			Approx
Valve Size	0.D.	Α	В	С	D	Е	F	G	Wt. Ea.
In./mm	In./mm	Ft./m	Ft./m	Ft./m	Ft./m	Ft./m	Ft./m	Ft./m	Ft./m
2	2.375	63/4	23/8	17/16	13/4	41/2	33/16	43/8	7.5
50	60.3	171	60	36	44	114	81	111	3.4
21/2	2.875	71/4	27/16	19/16	13/4	313/16	35/8	41/2	10.5
65	73.0	184	61	39	44	96	92	114	4.8
3	3.500	73/4	25/8	2	1 13/16	41/16	311/16	415/16	11.5
80	88.9	197	67	51	46	103	93	125	5.2
4	4.500	81/8	31/8	21/4	21/2	51/16	41/4	6	13.5
100	114.3	206	79	57	64	128	108	152	6.1
5	5.563	93/4	31/2	23/4	27/16	5 ¹³ / ₁₆	45/8	63/4	19.0
125	141.3	248	89	70	61	147	117	171	8.6
6	6.625	123/4	41/4	35/16	31/8	61/4	63/4	81/2	33.5
150	168.3	324	108	84	79	159	171	216	15.2
8	8.625	143/4	51/16	315/16	4	5 ¹⁵ / ₁₆	8	101/4	59.0
200	219.1	365	128	100	102	150	203	260	26.8
10	10.750	18	65/16	415/16	49/16	67/8	93/16	1211/16	130.0
250	273.1	457	160	125	115	175	233	322	59.0
12	12.750	21	75/16	6	51/16	71/4	103/8	143/4	183.0
300	323.9	533	185	152	128	184	264	375	83.0

Series 7800 Check Valves (Ordering Information)

	4"	78	1	1	Х
Sample Part Number	Size	Series	Clapper Facing Material	Body Finish	Special Configuration
4 /011>	2" - 12"	78 - 7800	1 - EPDM (Std) 2 - Nitrile (Std)	1 - Painted (Std)	2 - Other *

 $[\]hbox{*Contact an ASC Engineered Solutions representative for more information.}$

FC-07.16 page 181

Dual Disc Check Valve

Fig. CV890

The Fig. CV890 Dual Disc Check Valve is a grooved end, dual disc check valve used for pipelines to convey water and other fluids with a rated working pressure up to 300 psi (20.7 bar). This Dual Disc Check Valve is available in sizes from 14 inches (350 mm) to 24 inches (600 mm).

The Fig. CV890 Dual Disc Check Valve features a fully lined rubber body, spring-loaded 304 stainless steel disc and shafts. The Dual Disc Check Valve can be installed in a horizontal or vertical position (upward flow only). A lifting lug is provided with the assembly for ease of handling. The face to face dimensions conforms to API 594 Class 150 and grooved end dimensions to ANSI/AWWA C606. The seat and shell pressure tests conform to MSS SP-136 or higher.

The Fig. CV890 Dual Disc Check Valve is lighter than conventional swing check valves and is easier to install, utilizing only two grooved couplings. It is more economical than wafer or lugged valves. The Dual Disc Check Valve design produces less water hammer than a single disc valve. The spring-loaded disc design provides for positive closing. The fully lined rubber body and soft seat reduces noise and maintenance.

Maximum Working Pressure: 300 psi (20.7 bar) @ 100°F (38°C)

Material Specifications

Ductile iron conforming to ASTM A536, Gr. 65-45-12

Body Lining

• Grade Nitrile – For service temperatures from -20°F to 230°F (-29°C to 110°C). Recommended for petroleum products, mineral oils, vegetable oils, aromatic hydrocarbons, acids and water </=150°F (+65°C).

Note: Not recommended for use in hot water services.

Grade EPDM - For service temperatures from -30°F to 230°F (-34°C to 110°C). For general service. Recommended for water service, dilute acids, alkalies, oil-free air and many chemical services.

Note: Not recommended for use in petroleum services.

Disc

Stainless Steel Type 304

Disc Shafts

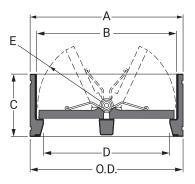
Stainless Steel Type 304

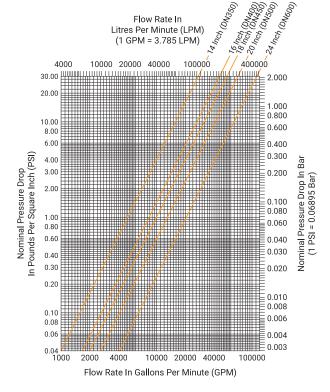
Spring

Stainless Steel Type 304

FC-05.18 page 182

Couplings


Fittings



Dual Disc Check Valve **Fig. CV890**

Valve	O.D.	Dimensions					
Size	0.5.	Α	В	С	D	Е	Wt. Ea.
In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	Lbs./Kg
14 350	14.00 355.6	14.49 368	12.96 329	7.25 184	11.14 283	6.06 154	101 46
16 400	16.00 406.4	16.14 410	14.13 359	7.50 191	12.20 310	6.81 173	119 54
18 450	18.00 457.2	18.15 461	16.42 417	8.000 203	14.33 364	8.00 203	169 77
20	20.00	20.04	18.11	8.625	16.06	8.80	211
500	508.0	509	460	219	408	226	96
24 600	24.00 609.6	24.00 610	22.13 562	8.750 222	18.00 457	9.80 249	131 288

FC-05.18 page 183

CTS Copper Butterfly Valve **Series 6700**

The lever handle bronze body butterfly valve is designed for use with grooved copper tubing (CTS), fittings and couplings. This valve features a 10 position lever handle, bronze body and EPDM rubber encapsulated disc. Both bronze valve body and the EPDM rubber disc obtained certification to ANSI/NSF 61 for use in potable water systems and is rated to 300 PSI.

Material Specifications

Valve Body:

ASTM B584 C89836; Bronze, Low Lead

Disc

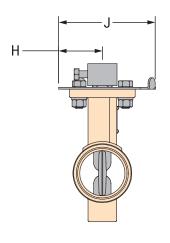
ASTM A536 Gr. 65-45-12; Ductile Iron

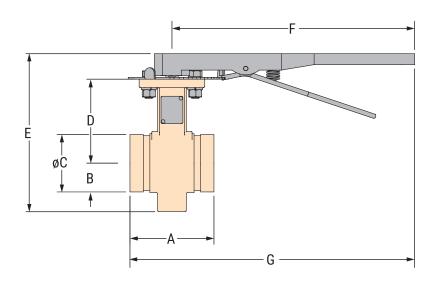
Disc Encapsulation:

Grade "EP" EPDM Rubber: Service temperature range: -40°F to +250°F (-40°C to +121°C Recommended for water service, diluted acids, alkaline solutions, and oil-free air.

NOT RECOMMENDED FOR USE IN PETRO-LEUM APPLICATIONS.

Upper and Lower Shafts:

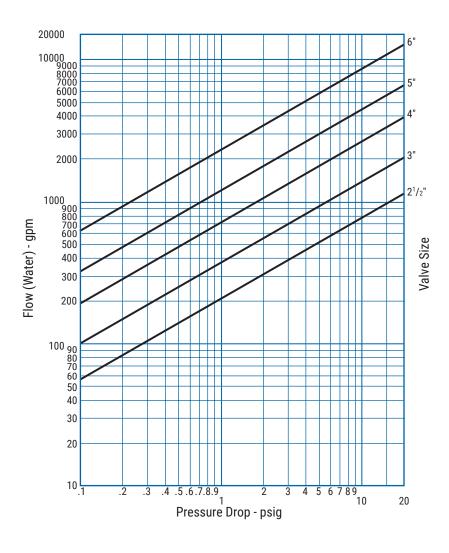

Stainless Steel Type 17-4PH; ASTM A564


Cerifi ations:

ANSI/NSF61 for use in Cold +86F(+30C and Hot +180F(+82C potable water systems. Annex G. UPC.

PS-04.14 page 281

CTS Copper Butterfly Valve Dimensions


Copper Tube	Dimensions									Weight
Diameter	Α	В	С	D	E	F	G	Н	J	weight
ln./mm	In./mm	ln./mm	In./mm	In./mm	ln./mm	ln./mm	ln./mm	In./mm	In./mm	Lbs./kg
2.625	3.77	2.22	2.63	3.83	7.20	10.50	12.39	2.00	4.43	4
66.7	95.8	56.4	66.7	97.3	182.5	266.7	314.6	50.8	112.5	1.8
3.125	3.77	2.60	3.13	4.08	7.84	10.50	12.39	2.00	4.43	5
79.4	95.8	65.9	79.4	130.5	198.2	266.7	314.6	50.8	112.5	2.3
4.125	4.63	3.10	4.13	4.72	8.97	10.50	12.81	2.00	4.43	8
104.8	117.6	78.7	104.9	119.9	227.8	266.7	325.5	50.8	112.5	3.8
5.125	5.88	3.85	5.13	5.22	10.27	10.50	13.44	2.00	4.43	14
130.2	149.4	97.8	130.2	132.6	260.9	266.7	341.4	50.8	112.5	6.4
6.125	5.88	4.36	6.13	5.75	11.31	10.50	13.44	2.00	4.43	18
155.6	149.4	110.8	155.6	146.2	287.3	266.7	341.4	50.8	112.5	8.1
	In./mm 2.625 66.7 3.125 79.4 4.125 104.8 5.125 130.2 6.125	Diameter A In./mm In./mm 2.625 3.77 66.7 95.8 3.125 3.77 79.4 95.8 4.125 4.63 104.8 117.6 5.125 5.88 130.2 149.4 6.125 5.88	Diameter A B In./mm In./mm In./mm 2.625 3.77 2.22 66.7 95.8 56.4 3.125 3.77 2.60 79.4 95.8 65.9 4.125 4.63 3.10 104.8 117.6 78.7 5.125 5.88 3.85 130.2 149.4 97.8 6.125 5.88 4.36	Diameter A B C In./mm In./mm In./mm 2.625 3.77 2.22 2.63 66.7 95.8 56.4 66.7 3.125 3.77 2.60 3.13 79.4 95.8 65.9 79.4 4.125 4.63 3.10 4.13 104.8 117.6 78.7 104.9 5.125 5.88 3.85 5.13 130.2 149.4 97.8 130.2 6.125 5.88 4.36 6.13	Diameter A B C D In./mm In./mm In./mm In./mm In./mm 2.625 3.77 2.22 2.63 3.83 66.7 95.8 56.4 66.7 97.3 3.125 3.77 2.60 3.13 4.08 79.4 95.8 65.9 79.4 130.5 4.125 4.63 3.10 4.13 4.72 104.8 117.6 78.7 104.9 119.9 5.125 5.88 3.85 5.13 5.22 130.2 149.4 97.8 130.2 132.6 6.125 5.88 4.36 6.13 5.75	Diameter A B C D E In./mm In./mm In./mm In./mm In./mm 2.625 3.77 2.22 2.63 3.83 7.20 66.7 95.8 56.4 66.7 97.3 182.5 3.125 3.77 2.60 3.13 4.08 7.84 79.4 95.8 65.9 79.4 130.5 198.2 4.125 4.63 3.10 4.13 4.72 8.97 104.8 117.6 78.7 104.9 119.9 227.8 5.125 5.88 3.85 5.13 5.22 10.27 130.2 149.4 97.8 130.2 132.6 260.9 6.125 5.88 4.36 6.13 5.75 11.31	Diameter A B C D E F In./mm In./mm In./mm In./mm In./mm In./mm In./mm 2.625 3.77 2.22 2.63 3.83 7.20 10.50 66.7 95.8 56.4 66.7 97.3 182.5 266.7 3.125 3.77 2.60 3.13 4.08 7.84 10.50 79.4 95.8 65.9 79.4 130.5 198.2 266.7 4.125 4.63 3.10 4.13 4.72 8.97 10.50 104.8 117.6 78.7 104.9 119.9 227.8 266.7 5.125 5.88 3.85 5.13 5.22 10.27 10.50 130.2 149.4 97.8 130.2 132.6 260.9 266.7 6.125 5.88 4.36 6.13 5.75 11.31 10.50	Diameter A B C D E F G In./mm In./mm In./mm In./mm In./mm In./mm In./mm In./mm 2.625 3.77 2.22 2.63 3.83 7.20 10.50 12.39 66.7 95.8 56.4 66.7 97.3 182.5 266.7 314.6 3.125 3.77 2.60 3.13 4.08 7.84 10.50 12.39 79.4 95.8 65.9 79.4 130.5 198.2 266.7 314.6 4.125 4.63 3.10 4.13 4.72 8.97 10.50 12.81 104.8 117.6 78.7 104.9 119.9 227.8 266.7 325.5 5.125 5.88 3.85 5.13 5.22 10.27 10.50 13.44 130.2 149.4 97.8 130.2 132.6 260.9 266.7 341.4 6.125 5.88	Diameter A B C D E F G H In./mm In	Diameter A B C D E F G H J In./mm In./mm<

GRUVLOK.
An ASC Engineered Solution

PS-04.17 page 282

CTS Copper Butterfly Valve **Series 6700**

Values for flow of water at +60°F (+16°C)

$$C_v = \frac{Q}{\sqrt{\triangle P}}$$

Where: C_v = Flow coefficien

Q = Flow (GPM)

 $\triangle P$ = Pressure drop (psi)

CTS Copper Butterfly (Ordering Information)

Sample Part _	4"	Α	N	67	2	1-	3
Number 4" AN6721-3>	Size	Body Style	Body Type	Series	Disc Coating	Operator	Shaft
	2½" - 6"	А	Bronze	6700	2 - EPDM (Grade EP)	1 - 10 Pos. Handlever	3 - Stainless Steel Type 17-4PH

PS-04.17 page 283

Grooved End Stainless Steel Butterfly Valve with Lever Handle

The Model B480 Grooved End Stainless Steel Butterfly Valve with Lever Handle is a grooved-end stainless steel butterfly valve designed for 300 psi service, supplied with a 10-position locking lever handle. The end-to-end dimensions conform to MSS SP-67. The body is investment cast in grade CF8M (Type 316) to ASTM A743 with integral neck and ISO mounting top flange. The neck height allows for pipe insulation up to two inches thick. The disc is a dual-seal type, encapsulated either with Grade "EN" EPDM for cold water services or with Grade "T" Nitrile for oil services. The Model B480 Stainless Steel Butterfly Valves with standard disc and Grade "EN" EPDM seat are UL classified to ANSI/NSF 61 and ANSI/NSF 372.

Maximum Working Pressure: 300 psi (20 bar)

Materials of Construction

Valve Body

CF8M (Type 316) Stainless Steel conforming to ASTM A743 or A351, or A744 which is UL Classified in accordance with ANSI/ NSF 61 and ANSI/NSF 372 for potable water use up to 180°F (82°C)

Stems

Stainless Steel Type 410 conforming to ASTM A582

Disc

CF8M (Type 316) Stainless Steel conforming to ASTM A743 or A351, or A744 which is UL Classified in accordance with ANSI/NSF 61 and Annex G for potable water use up to 180°F (82°C)

Disc Encapsulation

Grade "EN" EPDM Rubber Classified in accordance with ANSI/NSF 61 and ANSI/NSF 372 for potable water use up to 180°F (82°C), or Grade "T" Nitrile

O-Rings

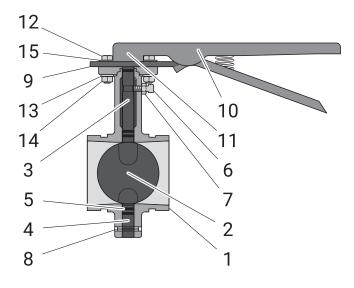
EPDM

Seat Material

- Grade "EN" EPDM For service temperatures from –30°F to 230°F (-34°C to 110°C). For general service. Recommended for water service, dilute acids, alkalies, oil-free air and many chemical services.
 - Note: Not recommended for use in petroleum services.
- Grade "T" Nitrile For service temperatures from –20°F to 180°F (–29°C to 82°C).
 Recommended for petroleum products, air with oil vapors, vegetable oils, and mineral oils.

Note: Not recommended for use in hot water services.

Contact an ASC Engineered Solutions Sales Representative for specific recommendations on seat material.



PS-03.18 page 333

Grooved End Stainless Steel Butterfly Valve with Lever Handle

Model B480

B480 Shaft Size

Size	Shaft Size SJ-400 (B480)
2"	ф12.7
21/2"	ф12.7
3"	ф12.7
4"	ф19.0
5"	ф19.0
6"	ф19.0
8"	ф19.0

Round shaft with pin.

Material Specifications

1. Body

Stainless Steel

2. Disc

Stainless Steel

3. Upper Shaft

Stainless Steel

4. Lower Shaft

Stainless Steel

5. O-Ring

EPDM

6. Hex Socket Set Screw

Stainless Steel

7. Hex Nut

Stainless Steel

8. Roll Pin

Spring Steel

9. Throttle Plate

Stainless Steel

10. Lever-Lock Handle Assembly

Stainless Steel

11. Roll Pin

Spring Steel

12. Hex Bolt

Stainless Steel

13. Lock Washer Stainless Steel

14. Hex Nut

Stainless Steel

15. Flat Washer

Stainless Steel

ssembly #

Roll

Introduction

Couplings

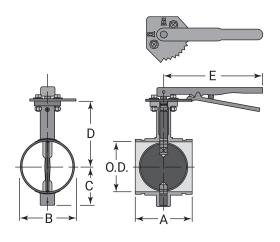
Fittings

nstallation & Assembly

Special Coatings (

L Design Services

Specs. D


3 Part S

ictorial

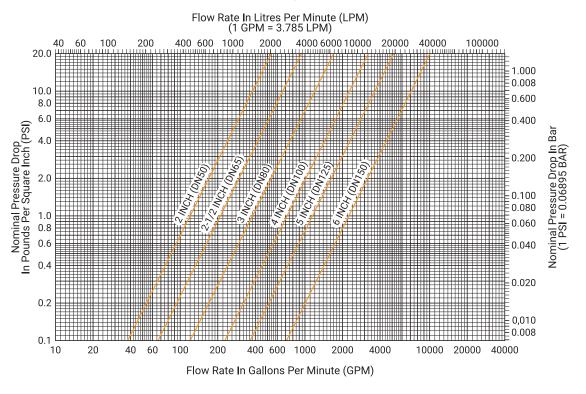
PS-08.21 page 334

Grooved End Stainless Steel Butterfly Valve with Lever Handle Model B480

Valve Size	O.D.	Operating Torque	Dimensions					
			Α	В	С	D	E	Wt. Ea.
In./mm	In./mm	In-lb/Nm	ln./mm	In./mm	In./mm	In./mm	In./mm	Lbs./Kg
2	2.375	78	3.19	2.756	2.480	4.17	10.0	5.0
50	60.3	8.80	81	70	63	106	254	2.,3
21/2	2.875	84	3.81	3.386	2.677	4.28	10.0	7.0
65	73.0	9.50	97	86	68	111	254	3,2
76.1mm	3.000	84	3.81	3.386	2.677	4.28	10.0	7.0
65	76.1	9.50	97	86	68	111	254	3,2
3	3.500	95	3.81	3.858	2.992	4.97	10.0	6.6
80	88.9	10.7	97	98	76	126	254	3,5
4	4.500	200	4.56	4.882	3.504	5.33	10.0	11.0
100	114.3	22.6	116	124	89	135	254	5,0
165.1mm	6.500	310	5.81	7.008	4.488	6.62	10.0	20.2
150	165.1	34.9	148	178	114	168	254	9,2
6	6.625	310	5.81	7.008	4.488	7.25	10.0	20.2
150	168.3	34.9	148	178	114	184	254	9,2

These torque values were derived from test data with non-lubricated valves in water, non-pressurized at ambient temperatures For information on alternative sizes, contact an ASC Engineered Solutions Sales Representative.

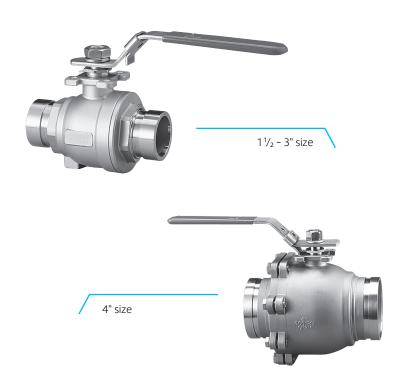
Note: The torque values are based on liquid applications. For dry or non-lubricating applications add a 25% service factor to the above values.



PS-08.21 page 335

Grooved End Stainless Steel Butterfly Valve with Lever Handle Model B480

Model B480 Grooved End Stainless Steel Butterfly Valve Nominal Pressure Loss Vs Flow


Couplings

Introduction

Fittings

Grooved End Stainless Steel Ball Valve with Lever Handle Model BV435

The Model BV435 Grooved End Stainless Steel Ball Valves with Lever Handle provide for efficient control of fluid in piping systems. Flow may be from either direction, and the valves may be positioned in any orientation. The valves are furnished with grooved ends for use with Gruvlok grooved couplings. The handle is provided with a device for padlocking in either the open or closed position.

Maximum Working Pressure: 600 psi (41.4 bar)

Material Specifications

Bod

Cast Stainless Steel per ASTM A351-CF8M

Bal

Cast Stainless Steel per ASTM A351-CF8M

Upper Stems

Stainless steel per ASTM A276, Type 316

Operator

Stainless Steel Lever per ASTM A-276, Type 304

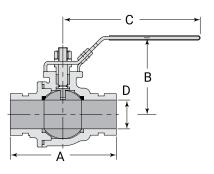
Seats

 $1\frac{1}{2}$ to 3 Inches: Virgin PTFE, 4 Inches: Glass Filled PTFE

Seals

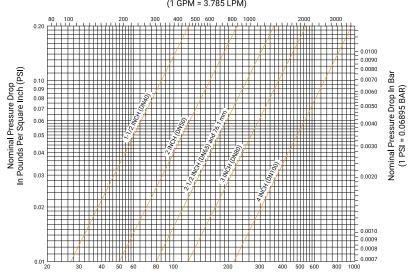
PTFE

O-Rings


EPDM

PS-04.18 page 337

Grooved End Stainless Steel Ball Valve with Lever Handle Model BV435



Size	O.D.		Dimer	Operating	Approx.		
	0.5.	Α	В	С	D	Torque	Wt. Ea.
ln./mm	In./mm	In./mm	In./mm	In./mm	In./mm	InLbs./Nm	Lbs./Kg
11/2	1.900	5.50	3.70	7.60	1.50	62	6.6
40	48.3	140	94	193	38	7	3.0
2	2.375	6.15	4.13	7.60	1.97	150	8.8
50	60.3	156	105	193	50	17	4.0
21/2	2.875	7.09	4.33	9.84	2.36	186	15.4
65	73.0	180	110	250	60	21	7.0
3	3.500	8.42	6.00	9.84	2.99	248	20.7
80	88.9	214	152	250	76	28	9.4
4	4.500	9.45	6.57	11.42	3.94	398	55
100	114.3	240	167	290	100	45	25.0

Weight includes the lever handle.

Model BV435 Grooved End Stainless Steel Ball Valve Nominal Pressure Loss vs Flow

Flow Rate In Litres Per Minute (LPM) (1 GPM = 3.785 LPM)

Flow Rate In Gallons Per Minute (GPM)

Introduction

s Couplings

Fittings Outlets

re Accessories

CTS Copper System

gs Nipple

ouplings F

Fittings (

Steel Method

allation ssembly Gro

Special In Coatings &

cal Design

r Format Tec t Specs.

I Master F 3 Part S

Pictorial Index